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Abstract

Survival Analysis is extensively used in the medical domain, typically involving the
estimation of patients’ survival times after certain treatment or before death. In this
paper we propose Deep Survival Experts, a Bayesian hierarchical model to estimate
time-to-event in case of right-censored data. By leveraging deep neural networks,
we are able to model the non-linear interactions in covariates and estimate survival
time in a fully parametric manner. We do not require to make the common strong
assumption of constant baseline hazard of underlying survival distribution as in
the Cox proportional hazard model (CPH), which removes the need of using non-
parametric approaches such as the Breslow’s estimator to estimate the survival time.
We demonstrate the superiority of our approach at estimating both relative risks
and time-to-event through extensive experiments with datasets from breast cancer
studies. To the best of our knowledge, this is the first work involving fully
parametric estimation of survival distributions in the presence of censoring.

1 Introduction

Survival Analysis is a field of statistics and machine learning that focuses on estimating the risk of an
event of interest taking place beyond a certain time in the future. In healthcare, the tasks typically
involve estimating the distributions of patients’ survival times before the onset of certain conditions
or death using the patient covariates, such as demographics, medical history, or test results.

The Cox proportional hazards model (CPH) (Cox, 1972) is the most broadly used model for medical
prognosis, and researchers have been successfully employing various techniques for CPH. (Rosen
and Tanner, 1999) proposed using a mixture of linear experts for CPH. With the recent trend of deep
and non-linear representation learning, (Xiang et al., 2000) evaluated different methods of combining
neural networks with CPH to model right-censored survival data, and (Katzman et al., 2018) achieved
state-of-the-art results with DeepSurv network. However, these approaches are still constrained by
the strong assumption of CPH that the relative hazard ratio between any two individuals is constant
over time, which may not hold in many practical scenarios. Besides, for medical applications which
need the predictions of not only the risk but also the actual time-to-event, models subject to the
CPH assumption normally have to require the non-parametric estimation of survival times using the
Breslow’s estimator (Breslow, 1972) based on the estimated relative risks.

Lee et al. (2018) proposed DeepHit, a deep learning approach capable of estimating the risk when
multiple events could lead to failure. However, their method can only deal with survival times
discretized into a finite set, and the sizes of both output space and parameters could become intractable
with large amounts of complex training data. In this paper, we propose Deep Survival Experts, a
Bayesian hierarchical model to directly estimate time-to-event, allowing full parameterization with
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deep neural networks to capture non-linear interactions of patient covariates. To our knowledge, this
is the first fully parametric estimation of survival distributions in the presence of censoring.

2 Approach

2.1 Survival Data

We assume that the survival data we consider is right-censored. This implies that the data, D is a set
of tuples {(x;,t;,6;)}Y,, where x; € R? are the covariates of a patient i, ¢; is time-to-event, and &;
is an indicator denoting whether ¢; is actual event time or right-censoring time. For one individual,
we observe either the actual event or censoring time, but not both. For simplicity, we assume that in

the true data generating process, the censoring process is independent of the actual time-to-event.

2.2 Deep Survival Experts

To accommodate patient heterogeneity arising in data, similar to (Rosen and Tanner, 1999), we
propose to model the survival distribution of each patient as a fixed-size mixture of survival experts,
the commonly used distribution primitives in parametric survival analysis. As shown in Figure 1,
the covariates x are passed through a deep neural network (DNN) followed by a Softmax over K.
The conditional distribution of the survival time 7', P(T|X = x), is then described as a weighted
mixture of K estimates by survival experts, with the outputs of the Softmax over K as the weights.

We choose Weibull distribution as the survival expert for our approach. This distribution is a widely
used parametric model in survival analysis, with survival function S(7T") = exp (—(%)”). At training
time, the parameters of the deep neural network and the K Weibull distributions are learned jointly.
At test time, the survival time of the held-out individual is predicted as a weighted mixture of the
medians of all Weibull(8y, nx), for k = 1...K. As survival distributions with positive support tend to
have long tails, we choose to use the median for survival time prediction instead of the expectation.

1. X ~ D
We draw the covariates of a patient, x;.
2. z; ~ Discrete(SOFTMAX(DNN(x;, w))) @
Conditioned on the covariates, x; and the
parameters, w, we draw the latent z;.

3. Bk ~ Log-Normal(g3, o) .
77;]:. ~ Log-Normal(7, 5) @
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The set of parameters {8y }H<_; and {n; }1_, are drawn
from the prior 3 and 7.

4, ti ~ Weibull(ﬂk, ’r]k)
Finally, the event time ¢, is drawn conditioned on (3,
and 7.
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Figure 1: The generative story and a plot in plate notation of the proposed model.

2.3 Loss Function

To handle both the uncensored data, Dy (patients with actual time-to-event available) and the
censored data, D¢, we train the Deep Survival Experts model by minimizing a total loss function
Lioal = LDy + LD + Lprior- Lprior imposes the strength of the priors 3 and 71 on the 3y, 1y of
each of the K experts. The priors are fit without conditioning on the covariates. To adjust for the
positive bias brought by the long tails of survival distributions when predicting event times, we
include another term, Ly;,s, that explicitly penalizes median survival times of the uncensored data
under the distribution imposed by the model to be close to the true survival time in Ls norm. Using
the maximum likelihood estimators (LL), we have Lp,, = a - Lyjas + (1 — @) - (=LLp,, ), Where «
is chosen to trade off the likelihood and bias loss, and Lp, = —LLp,,.



The maximum likelihood estimator and its evidence lower bound (ELBO) for the uncensored data
Dy can be written as
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Proceeding as above, for the censored data D¢ as
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The strength of the priors on the Sy, 1y is included in Lo norm as
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And the Ly, can be written as below, for Weibull distribution, the median f:[k] = Br(In2) "
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where 6 = SOFTMAX(DNN(x;, w)) and t € R”.

3 Experiments and Results

We evaluate our approach by both assessing the ordering of pairwise relative risks using Concordance-
Index (C-Index) (Harrell, 1982), and by measuring the actual time-to-event detection using Root
Mean Square Error (RMSE) around the predicted event times for the uncensored observations. We
compare our performance against CPH, and two other state-of-the-art non-linear survival models -
DeepSurv (Katzman et al., 2018) and Random Survival Forests (RSF) (Ishwaran et al., 2008).

We evaluated the performances on two real-world medical datasets: Rotterdam & German Breast
Cancer Study Group (GBSG) (Schumacher et al., 1994) and The Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) (Curtis et al., 2012). Both datasets were downloaded



from (Katzman et al., 2018), ! and have already been partitioned for training and testing. GBSG
contains records of patients with primary node positive breast cancer taken from Rotterdam tumour
bank and clinical trials to study the effects of chemotherapy and hormonal treatment on survival
rate (Royston and Altman, 2013). METABRIC contains the gene expressions and clinical features of
patients to determine breast cancer subgroups and facilitate treatment improvement. The sizes and
censoring ratios of these datasets are described in Appendix A.1.

We reserved 10% of the training set as validation set (the ratio of censoring was maintained). We
tuned the hyper-parameters and selected the best model that achieved the lowest RMSE among the
models that achieved the top 5 C-Index, both on the validation set. We bootstrapped the test set to
obtain the confidence intervals as (Katzman et al., 2018). The hyper-parameters we used for each
dataset and the implementation details of the baseline models are shown in Appendix A.2 and A.3.

The performances of Deep Survival Experts and the baseline models are shown in Table 1 and
Table 2. Our approach achieved the best performance both in C-Index and RMSE for the GBSG
dataset, and is only inferior to DeepSurv (not statistically significantly) for METABRIC dataset in
Concordance-Index, yet still outperforms all three baseline models in RMSE. The results demonstrate
the superiority of our approach in estimating time-to-event compared with other models which have
to rely on the Breslow’s estimator for non-parametric estimations of event times, while remaining
very competitive in estimating the relative risks.

Table 1: Concordance-Index of all models (95% Confidence Interval)

DATASET
MODEL DEEP SURVIVAL
CPH DEEPSURV RSF EXPERTS
GBSG 0.658 0.668 0,651 0.685
(0.654, 0.661) | (0.665,0.671) | (0.648,0.654) | (0.682, 0.689)
0.631 0.643 0.624 0.638
METABRIC |, 657 0.635) | (0.639,0.647) | (0.620.0.629) | (0.634,0.642)
Table 2: RMSE of all models (95% Confidence Interval)
DATASET
MODEL
DEEP SURVIVAL
CPH DEEPSURV RSF EXPERTS
GBSG 26293 25504 75918 18,791
(26.168, 26.418) | (25.391,25.617) | (25.786,26.049) | (18.68, 18.902)
92.184 89.816 94.586 73.826
METABRIC | g 446 92.923) | (89.216,90.417) | (93.858.95.314) | (73.119,74.534)

4 Conclusion

In this paper, we proposed Deep Survival Experts, a novel approach of estimating survival time in a
fully parametric manner, by using the mixture of survival experts and deep neural networks. We have
demonstrated on real-world medical data that our model can outperform state-of-the-art baselines
at estimating time-to-event and can achieve competitive results in estimating the relative risks. The
resulting models are readily interpretable due to their parametric nature. Our method is universally
applicable to a wide range of survival modeling tasks in healthcare applications. Our future work
includes incorporating other types of survival experts, such as log-logistic or log-normal distributions
into our current framework, and testing the method on more and larger real-world survival datasets.
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A Appendix

A.1 Datasets

The number of patients, number of covariates, and ratio of censoring (proportion of patients whose follow-up
were lost before death) of each dataset is show in Table 3.

Table 3: Detailed information of each dataset.

DATASET
GBSG GBSG METABRIC | METABRIC
- TRAIN - TEST - TRAIN - TEST
Number of patients 1,546 686 1,523 381
Number of covariates 7 7 9 9
Number of events 968(62.61%) | 299(43.59%) | 887(58.24%) | 216(56.69%)

A.2 Hyper-parameter Tuning for Deep Survival Experts

Deep Survival Experts was implemented in PyTorch environment. The hyper-parameters include: number of
survival experts (/V), deep neural network (DNN) structure, learning rate (LR), A for Lyior, o for Lyias, and
whether using the log-likelihood or its ELBO in loss function. The neural network structure is described in
the format [number of input covariates, number of nodes in layer 1...n, number of survival experts], if there is
only [number of input covariates, number of survival experts], it means that a linear network is chosen by the
performance on validation set. The numbers of input covariates for GBSG and METABRIC are 7 and 9. We
used ReLu activation function for the hidden layers. The network was trained by back-propagation with Adam
optimizer. The hyper-parameters we used for each dataset is shown in Table 4.


https://cran.r-project.org/package=randomForestSRC

Table 4: Hyper-parameters of Deep Survival Experts for each dataset.

HYPER-PARAMETERS DATASET
GBSG | METABRIC
N 3 3
DNN structure [7,7,3] 9, 3]
LR 0.001 0.001
A 0.01 0.01
« 0.001 0.0001
ELBO Yes No

A.3 Implementation of Baseline Models

We reported the C-Index with reference to the results reported in (Katzman et al., 2018). We then tried to
reproduce their experiments to estimate the survival times. We ran CPH and C-index statistics using the Lifelines
Python library. We ran DeepSurv experiments using code and instructions provided in https://github.com/
jaredleekatzman/DeepSurv. We ran RSF experiments with the R package randomForestSRC (Ishwaran and
Kogalur, 2019). The survival curves of CPH and DeepSurv were then estimated using the Breslow’s estimator
(RSF has an estimation of the survival curves), and then the expectations of survival times were used as the
predicted event times. We did not use the median of survival times as the empirical survival curves do not
guarantee to cross 0.5.
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